Verb Class Discovery from Rich Syntactic Data
نویسندگان
چکیده
Previous research has shown that syntactic features are the most informative features in automatic verb classification. We investigate their optimal characteristics by comparing a range of feature sets extracted from data where the proportion of verbal arguments and adjuncts is controlled. The data are obtained from different versions of VALEX [1] – a large SCF lexicon for English which was acquired automatically from several corpora and the Web. We evaluate the feature sets thoroughly using four supervised classifiers and one unsupervised method. The best performing feature set includes rich syntactic information about both arguments and adjuncts of verbs. When combined with our best performing classifier (a novel Gaussian classifier), it yields the promising accuracy of 64.2% in classifying 204 verbs to 17 Levin (1993) classes. We discuss the impact of our results on the state-or-art and propose avenues for future work.
منابع مشابه
رشد جنبه معنایی فعل در کودک فارسیزبان: مطالعه طولی
Objective Learning “verb” as one of the main components of sentence, has been always a debatable topics in the process of language learning. One of the important issues in “verb” learning is determining its meaning using syntactic clues and learning its semantic aspects. Therefore, the main objective of this study was to examine the development of the semantic aspect of ...
متن کاملImproving Verb Clustering with Automatically Acquired Selectional Preferences
In previous research in automatic verb classification, syntactic features have proved the most useful features, although manual classifications rely heavily on semantic features. We show, in contrast with previous work, that considerable additional improvement can be obtained by using semantic features in automatic classification: verb selectional preferences acquired from corpus data using a f...
متن کاملSemi-supervised Verb Class Discovery Using Noisy Features
We cluster verbs into lexical semantic classes, using a general set of noisy features that capture syntactic and semantic properties of the verbs. The feature set was previously shown to work well in a supervised learning setting, using known English verb classes. In moving to a scenario of verb class discovery, using clustering, we face the problem of having a large number of irrelevant featur...
متن کاملGerman Verb Patterns and Their Implementation in an Electronic Dictionary
Here we describe an electronic lexical resource for German and the structure of its lexicon entries, notably the structure of verbal single-word and multi-word entries. The verb as the center of the sentence structure, as held by dependency models, is also a basic principle of the JAKOB narrative analysis application, for which the dictionary is the background. Different linguistic layers are c...
متن کاملHybrid Methods for Acquisition of Lexical Information: the Case for Verbs
Improved automatic text understanding requires detailed linguistic information about the words that comprise the text. Particularly crucial is the knowledge about predicates, typically verbs, which communicate both the event being expressed and how participants are related to the event. Although the field of natural language processing (NLP) has yet to develop a clear consensus on guidelines fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008